Algebra Questions and Answers

Q1 :

If a=bx,b=cy and c=az,a=b^x, b=c^y text{ and } c = a^z,b=cyb=c^y  and c=azc=a^z then the value of xyzxyz is equal to

A
  

–1

B
  0
C
  1
D
  

abcabc

Check Answer
Q2 :

A bill for Rs. 40 is paid by means for Rs. 5 notes and Rs. 10 notes. Seven notes are used in all. If xx is the number of Rs. 5 notes and yy is the number of Rs 10 notes then

A
  

x+y=7 and x+2y=40x + y = 7 text{ and } x + 2y = 40

B
  

x+y=7 and x+2y=8x + y = 7 text{ and } x + 2y = 8

C
  

x+y=7 and 2x+y=8x + y = 7 text{ and } 2x + y = 8

D
  

x+y=7 and 2x+y=40x + y = 7 text{ and } 2x + y = 40

Check Answer
Q3 :

if 1+55729=1+x27sqrt{1 + frac{55}{729}} = 1 + frac{x}{27},  then the value of xx is

A
  

1

B
  

3

C
  

5

D
  

7

Check Answer
Q4 :

If 5x3+5x26x+95x^3 + 5x^2 - 6x + 9 is divided by (x+3)(x + 3), then the remainder is:

A
  

135

B
  

-135

C
  

63

D
  

-63

Check Answer
Q5 :

If x+y=2x + y = 2, then the value of x4+y4x3y2x2y3+16xyx^4 + y^4 - x^3y^2 - x^2y^3 + 16xy is equal to

A
  

16

B
  

32

C
  

4

D
  

2

Check Answer
Q6 :

If the roots of the equation ax2+2bx+c=0ax^2 + 2bx + c = 0 are α and βalpha text{ and } beta is equal to 

A
  

2bacfrac{2b}{ac}

B
  

2bac-frac{2b}{sqrt{ac}}

C
  

2bacfrac{2b}{sqrt{ac}}

D
  

bacfrac{-b}{sqrt{ac}}

Check Answer
Q7 :

If 2x=4y=8z2^x = 4^y = 8^z and xyz=288xyz = 288, then 12x+14y+18zfrac{1}{2x} + frac{1}{4y} + frac{1}{8z} is equal to 

A
  

118frac{11}{8}

B
  

1124frac{11}{24}

C
  

1148frac{11}{48}

D
  

1196frac{11}{96}

Check Answer
Q8 :

if  (ab)x1=(ba)x3Big(frac{a}{b} Big)^{x-1} = Big(frac{b}{a}Big)^{x-3}, then the value of xx is 

A
  

1

B
  

2

C
  

3

D
  

4

Check Answer
Q9 :

The solution of the equation 2x7=2562^{x-7} = 256 is

A
  

7

B
  

8

C
  

15

D
  

1

Check Answer
Q10 :

xx varies inversely as the square of yy. Given that y=2y=2 for x=1x=1. The value of xx for y=6y=6 will be equal to

A
  3
B
  9
C
  

13frac{1}{3}

D
  

19frac{1}{9}

Check Answer
Q11 :

x4mx3+2x25x+8=0x^4 - mx^3 + 2x^2 - 5x + 8 = 0, when divided by x2x - 2, gives remainder as 3m3m. Then the value of 3m3m is equal to

A
  

228frac{-22}{8}

B
  

-2

C
  

2

D
  

228frac{22}{8}

Check Answer
Q12 :

If xm=yn=zp,xyz=1 and m0x^m = y^n = z^p, xyz = 1 text{ and } m ne 0, then 1m+1n+1pfrac{1}{m} + frac{1}{n} + frac{1}{p} is equal to

A
  

0

B
  

3

C
  

-2

D
  

-3

Check Answer
Q13 :

The value of kk, for which the system of equations x+2y+7=0x + 2y + 7 = 0 and 2x+ky+14=02x + ky + 14 = 0 will have infinitely many solutions, is

A
  

2

B
  

4

C
  

6

D
  

8

Check Answer
Q14 :

Roots of the equation x2+x(2p2)2p2=0x^2 + x(2 - p^2) - 2p^2 = 0 are

A
  

p2 and 2-p^2 text{ and } -2

B
  

p2 and 2p^2 text{ and } -2

C
  

p2 and 2-p^2 text{ and } 2

D
  

p2 and 2p^2 text{ and } 2

Check Answer
Q15 :

If one root of the equation ax2+bx+c=0,a0ax^2 + bx + c = 0, a ne 0, is reciprocal of the other, then

A
  

b=cb = c

B
  

a=ca = c

C
  

a=0a = 0

D
  

b=0b = 0

Check Answer
Q16 :

If αalpha and βbeta are the roots of the equation x2px+q=0x^2 - px + q = 0, then the equation whose roots are αβ+α+βalpha beta + alpha + beta and αβαβalpha beta - alpha - beta is

A
  

x2+qxp=0x^2 + qx - p = 0

B
  

x2+2qx+p2+q2=0x^2 + 2qx + p^2 + q^2 = 0

C
  

x22qx+q2p2=0x^2 - 2qx + q^2 - p^2 = 0

D
  

x2+2qx+p2q2=0x^2 + 2qx + p^2 - q^2 = 0

Check Answer
Q17 :

Roots of the equation (xb)(xc)(ab)(ac)a2+(xa)(xc)(bc)(ba)b2=x2frac{(x - b)(x -c)}{(a - b)(a - c)} a^2 + frac{(x - a)(x - c)}{(b - c)(b - a)}b^2 = x^2 are

A
  

1, 1

B
  

a, 0

C
  

b, 0

D
  

a, b

Check Answer
Q18 :

Solution of 42x=1324^{2x} = frac{1}{32} is

A
  

54frac{5}{4}

B
  

54frac{-5}{4}

C
  

34frac{3}{4}

D
  

52frac{-5}{2}

Check Answer
Q19 :

If 102y=2510^{2y} = 25, then to 10y10^{-y} equals

A
  

15-frac{1}{5}

B
  

1625frac{1}{625}

C
  

150frac{1}{50}

D
  

15frac{1}{5}

Check Answer
Q20 :

If x=213+213x = 2^frac{1}{3} + 2^frac{1}{3}, then the value of 2x36x2x^3 - 6x will be:

A
  

5

B
  

6

C
  

8

D
  

10

Check Answer
Q21 :

If a+b+c=2sa + b + c = 2s, then the value of (sa)2+(sb)2+(sc)2+s2(s - a)^2 + (s - b)^2 + (s - c)^2 + s2 will be:

A
  

s2+a2+b2+c2s^2 + a^2 + b^2 + c^2

B
  

a2+b2+c2a^2 + b^2 + c^2

C
  

s2a2b2c2s^2 - a^2 - b^2 - c^2

D
  

4s2a2b2c24s^2 - a^2 - b^2 - c^2

Check Answer
Q22 :

If a3=117+b3a^3 = 117 + b^3 and a=3+ba = 3 + b, then the value of a+ba + b is:

A
  

±7pm 7

B
  

49

C
  

0

D
  

±13pm 13

Check Answer
Q23 :

If am+5=22m+10a^{m + 5} = 2^{2m + 10}, then, using the law of indices, the value of aa is:

A
  

3

B
  

4

C
  

5

D
  

6

Check Answer
Q24 :

If α,β,γalpha, beta, gamma and δdelta are the roots of the polynomial equation (x23x+4)(x2+2x+5)=0(x^2 - 3x + 4)(x^2 + 2x + 5) = 0 then quadratic equation whose roots are α+β+γ+δalpha + beta + gamma + delta and αβγδalpha beta gamma delta is:

A
  

x2x+20=0x^2 - x + 20 = 0

B
  

x25x+20=0x^2 - 5x + 20 = 0

C
  

x2+x20=0x^2 + x - 20 = 0

D
  

x2x10=0x^2 - x - 10 = 0

Check Answer
Q25 :

The solution for real xx in equation x22x+1<0x^2 - 2x + 1 lt 0 is:

A
  

1

B
  

-1

C
  

0

D
  

non-existent

Check Answer
Q26 :

If x+y=1x + y = 1, then the largest value of xyxy is

A
  

1

B
  

0.5

C
  

0.4

D
  

0.25

Check Answer
Q27 :

If xy=1x - y = 1 and x2+y2=41x^2 + y^2 = 41, then the value of x+yx + y will be:

A
  

±9pm9

B
  

±1pm 1

C
  

5 or 45 text{ or } 4

D
  

5 or 4-5 text{ or } -4

Check Answer
Q28 :

If xy+yx=103sqrt{dfrac{x}{y}} + sqrt{dfrac{y}{x}} = dfrac{10}{3} and x+y=10x + y =10, then the value of xyxy will be:

A
  

36

B
  

24

C
  

16

D
  

9

Check Answer
Q29 :

If a=3a = 3 and bc=(bc)+(b2c2)2bcb * c = frac{sqrt{(b-c) + (b^2 - c^2)}}{2bc}  then calculate a×bca times b * c for b=7,c=3b = 7, c = 3

A
  

117frac{sqrt{11}}{7}

B
  

117frac{11}{7}

C
  

117frac{11}{sqrt{7}}

D
  

117sqrt{frac{11}{7}}

Check Answer